

2008 AIAA Atmospheric and Space Environments

7th AIRA Research Implementation Forum

Current Perspectives on Jet Engine Power Loss in Ice Crystal Conditions: Engine Icing

Jeanne Mason

Senior Specialist Engineer - Propulsion

Boeing Commercial Airplanes

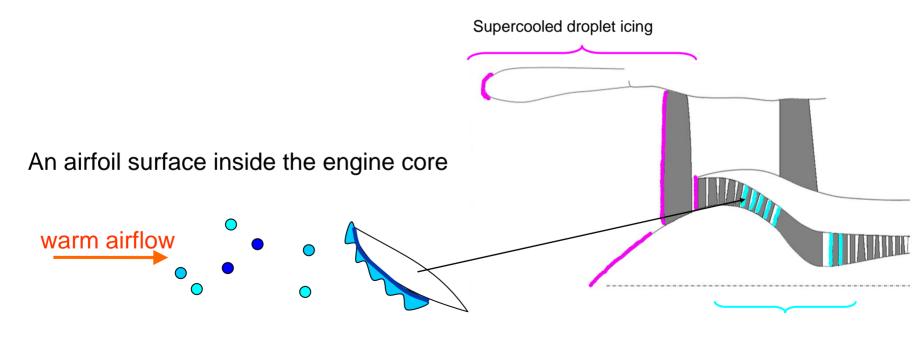
June 23, 2009

Acknowledgements: Walter Strapp, Environment Canada

Matt Grzych, Boeing

Philip Chow, Engine Icing Consultant

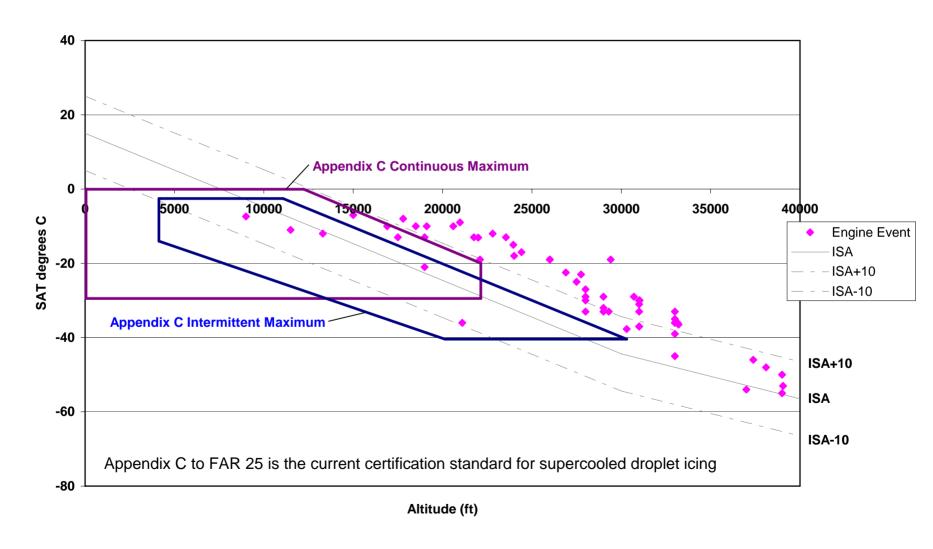
Ice Crystal Icing - Definition


- Ice shedding can cause engine power loss (surge, flameout) and damage
- High Ice Water Content (HIWC) new term to describe copious quantities of ice crystals in these clouds which cause engine events

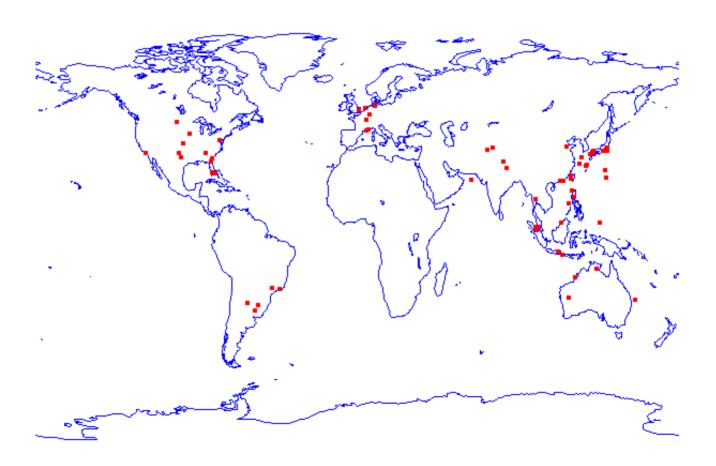
(Ref: AIAA 2006-206-739 Mason, Strapp & Chow)

What is Ice Crystal Icing?

Ice Crystals Encounter Heated Engine Surfaces and Form Ice


- Frozen ice crystals impinging on a warm surface in the engine
- Some crystals melt, creating local mixed phase conditions
- Crystals impinging on wetted surface stick, cool the surface to 0C
- Ice begins to form
- At high altitude, ice can form deep in the engine core

Potential ice particle accretion areas


Environmental Conditions

Altitude and Temperature of Engine Power Loss and Damage Events

Global View of Engine Power Loss Events

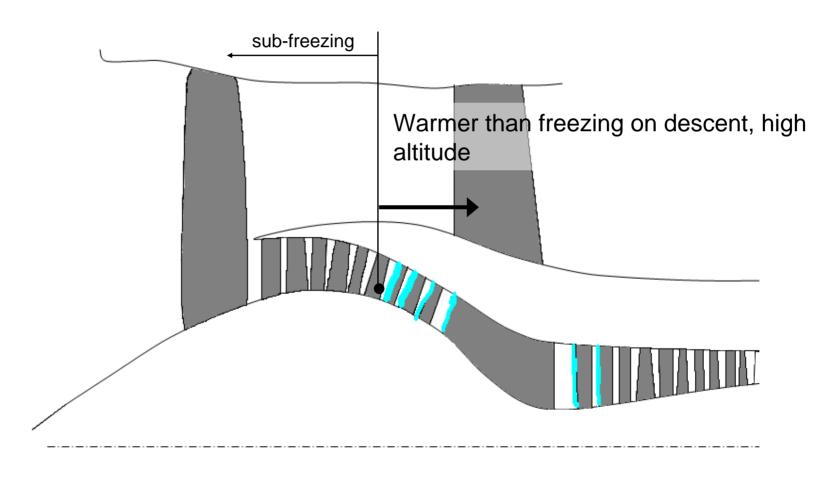
■ 60% of events in the Asia Pacific region – this may be due to the fact that the highest sea surface temperatures are also found in this region

Scope of the Ice Crystal Icing Problem

- Affects multiple models of aircraft and engines (Large transport aircraft and small jet aircraft)
- Over 100 power loss events approximately 1 every 4 months
- Typically 1 in 4 engine power loss events involves multiple engines large transport events have always restarted
- Approximately 60 damage events, typically compressor blade tip curl, rarely multiple engines damaged
- Affects new and old engine designs, new and old engines
- Data mostly comes from in-service events pilot reports and digital flight data
- The industry is just beginning to understand this icing phenomenon

Types of Power Loss Events

Powerloss		
Type	Description	Cockpit Effect
Surge/Stall	Ice shed into compressor drives engine to surge, then stall causes rotor speeds to decay and reducing airflow while combustor remains lit	Thrust loss and High EGT
Flameout	Ice shed into the combustor quenches the flame	Thrust loss and all parameters dropping
Engine Damage	Engine compressor blades become damaged as shed ice impacts them	Typically no effect at time of initial damage, damaged blades may fail later causing vibration or engine stall

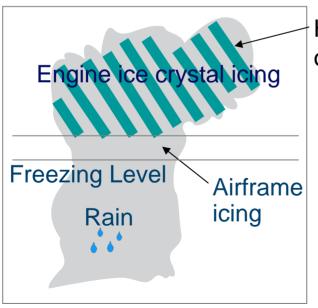

- Each engine appears to have a different manifestation of ice crystal icing
- Flight crew recognition and recommended action depends on the event
- There is no single solution for all events

Location of Ice Crystal Ice Formation

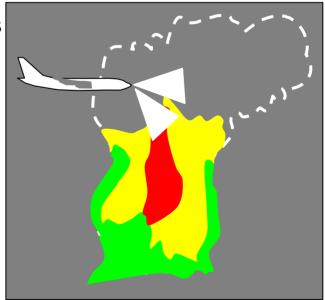
- From aircraft flight recorder data it is not evident exactly when and under what conditions the ice is forming
- In large turbofan engines, power loss occurs when ice sheds, not during ice formation
- Often, the engine throttle is not steady during the accretion conditions
- Some clues to ice accretion location:
 - Current industry experience: ice has formed on engine surfaces ranging from >0°C to 38°C (100°F)
 - Damage likely from ice shed from location immediately upstream

Location of Ice Crystal Ice Formation

Pinpointing Location of Ice Formation in the Engine


Pilot Reports Provide Valuable Insight

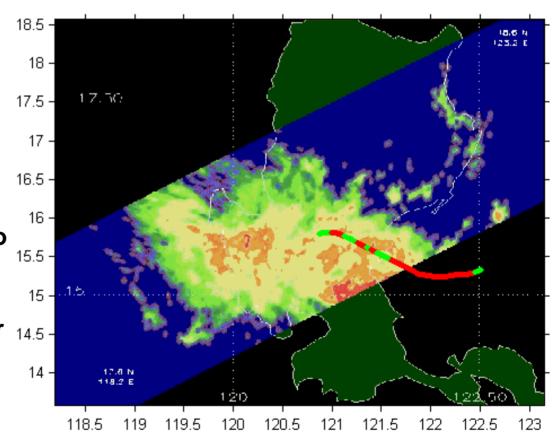
Events often occur in conditions the pilots consider benign


- Events occur with little or no reflectivity at flight level ice particles are very small & poor reflectors of radar energy
- While avoiding weather radar returns not flying through heavy storm cores
- Low to moderate turbulence low updraft velocities
- No airframe ice ice particles hitting airframe do not accrete
- Pilots often report heavy rain ice particles melting on the heated windscreen give the appearance of rain
- Pilots are following standard practices regarding thunderstorm avoidance the conditions where engine power loss events are occurring have not traditionally been considered a weather concern

Pilot Recognition of HIWC is a Process of Deduction

- ■Flying in cloud above the freezing level in convective weather
- ■Aircraft may already be avoiding flight-level weather radar returns
- Aircraft is near the deepest part of the cloud (cloud tops can reach the tropopause)
- ■Heavy rain is present below the aircraft, producing yellow and red returns, but few or no returns at flight level
- ■Using 'tilt feature' on radar should identify heavy rain below a good indicator that dense ice crystals may exist above

High concentrations of ice crystals


Convective Cloud

Radar Representation of Convective Cloud

Event Analysis – Where does HIWC occur?


Boeing has conducted in-depth analyses of 50 events

- Goal: to understand where, and in what types of cloud high ice water content occurs
- Three areas of focus:
 - 1. Meteorological: satellite images, ground based radar, convective environment
 - 2. Pilot reports: proximity to radar returns, reports of rain, turbulence
 - 3. Total Temperature Sensor 14.5 Anomaly

A Conceptual Model of HIWC Regions

- Developed from event database with ground based radar data
- Radar data has revealed that reflectivity typically exceeds 30dbz below the aircraft at the time of the engine power loss

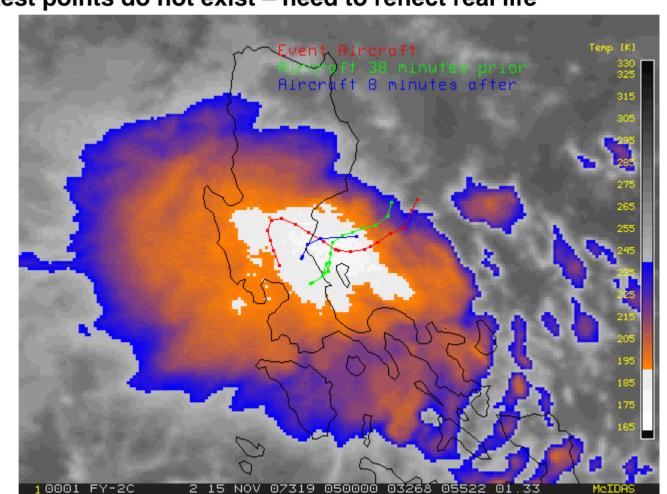
Industry Progress - Regulations

Industry Committee Activities

- Development of Regulatory Requirements:
 - Created Appendix D, an interim icing envelope for Engine Certification FAR Part 33 similar to Appendix C, built with theory and experimental data (SAE 2007-01-3377 Mazzawy & Strapp)
 - Developed draft rules for engine and powerplant certification part of Supercooled Large Droplet package expected to be published as FAA Notice of Proposed Rulemaking (NPRM) 1st quarter 2010
 - Means of compliance by similarity proposed until technology needs are completed

Future Compliance with Federal Aviation Regulations

Event Analysis Provides Information for Future Engine Testing in Ice Crystals


■ Compliance with the regulations in future will mean conducting engine tests

Currently specific test points do not exist – need to reflect real life

encounters

■ Event data analysis can help formulate test conditions

- How long do we expose the engine to HIWC?
- Can the aircraft be exposed during holding?

Industry Progress – Research Needs

Industry Committee Activities

- Technology Plan developed to address unknowns:
 - 1. Improved instrumentation to measure atmosphere
 - 2. Flight trials to characterize atmosphere (understand particle size, concentration and extent)
 - 3. Fundamental physics of ice accretion and shedding
 - 4. Test methods and facilities
- Government/Industry partnerships are being created to fund this work

Fundamental Physics of Ice Accretion and Shedding - Progress

Technology Plan Item 3 - Successful Rig test

Boeing and National Research Council of Canada partnered for the first successful rig-based simulation of engine-like conditions January 2009

■ Objectives:

- 1. Modeled mixed phase ice accretion in both above freezing and below freezing airflow
- 2. Explored accretion characteristics of various combinations of LWC (liquid water content) and IWC (ice water content)
- 3. Determined the influence of surface temperature on accretion and the adhesion of the accreted ice
- 4. Observed the response of embedded metal thermocouples
- 5. Obtained data to understand the process of the ice crystals impacting the surface and the initiation of accretion

Technology Plan Item 3 - Successful Rig Test

Simulation of the s-shaped duct between the low and high compressors

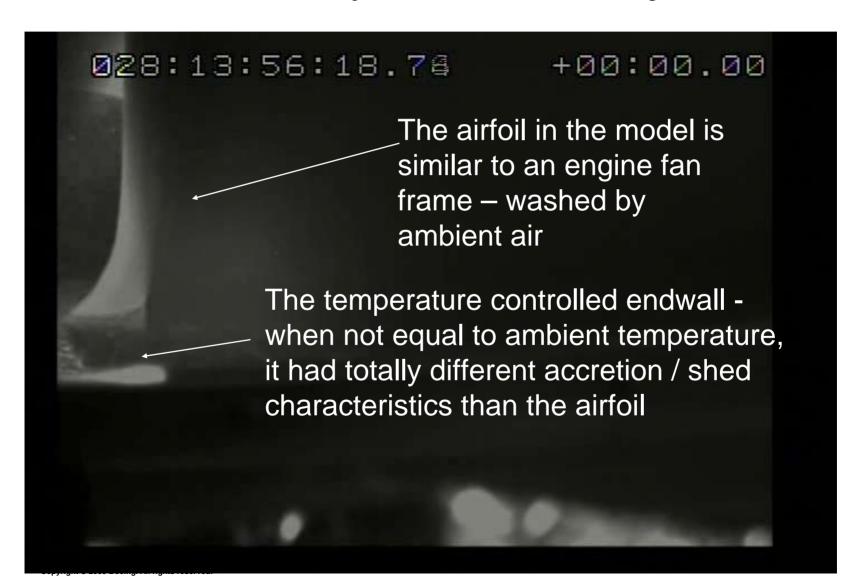
Geometry to simulate engine s-shaped duct with fan frame

Metal surface thermocouples on leading edge of airfoil

Warm air, frozen ice particles

Independently heat controlled endwall

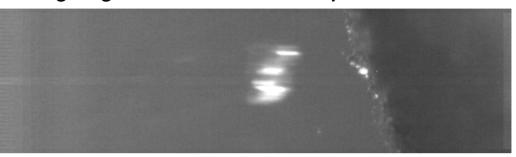
Rig Simulation of Icing in Engine Environment

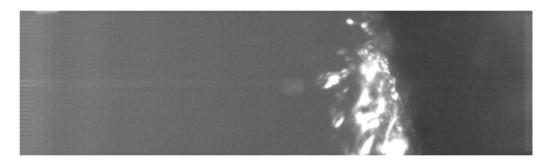

General Test Results

- Local mixed phase conditions must be present
- Surface temperature reduction to freezing (0°C) for ice formation
- Observed ice forming on endwall and stagnation points

Rig Simulation of Icing in Engine Environment

Two Different Scenarios for Ice Crystal Accretion and Shedding

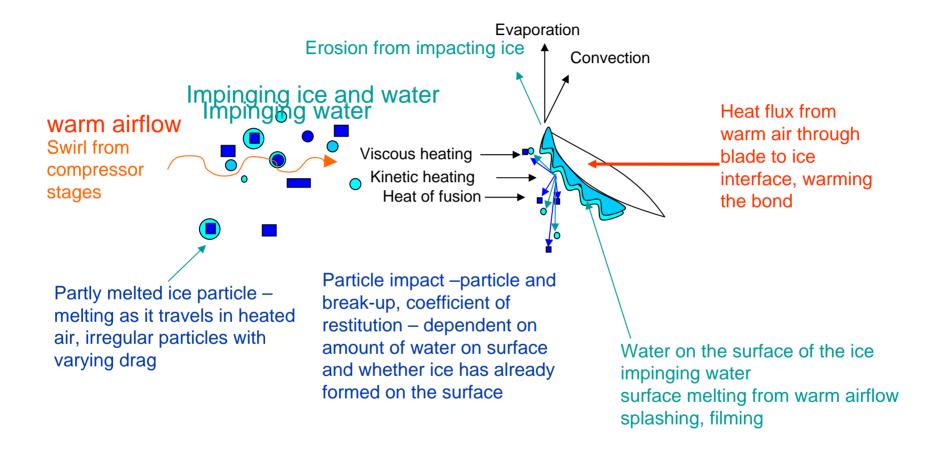



Phantom Camera Images of Ice Impact


Single ice particle impacting leading edge taken with NASA's phantom camera

■ Investigated:

- onset of ice accretion
- how/whether particles bounce/break on the surface
- where incoming water goes – splash or stick to surface
- how much liquid is present on the surface, and does it splash
- amount of melting of incoming particle



Overview of Results

- Although a simplified model, the rig produced results consistent with some of our predictions about the ice crystal accretion process
- It is the first time that we have a controlled experiment showing that accretion is possible on surfaces warmer than freezing, as measured by thermocouples
- The high speed camera provided insight into the mechanism of initial accretion, and build-up
- The experimental data is still being evaluated, and is expected to provide guidance for developing the next set of rig tests
- Further testing of this nature will be needed to develop parameterizations for all the elements of the icing process

Complex Heat Transfer Problem – Some of the Elements

Black text represents elements of supercooled droplet accretion

Next Steps in Fundamental Physics Research

Technology Plan – Progress on Item 3 Fundamental Physics

- 2nd Boeing/NRC Collaborative Rig Test May 2009 airfoil at an angle of attack
- Ice Crystal Icing Consortium cascade test in 2009 (macroscopic processes)
- Collaborative test on flat plate (microscopic processes of particle bouncing, breakup & splashing)

Conclusions

- Ice crystal icing conditions continue to cause turbofan engines power loss and damage events
- Event analysis allows us to provide better information to pilots for weather recognition
- Data on location of events with respect to reflectivity in the cloud will be valuable to future flight programs and definition of future engine tests
- Progress is being made towards understanding of the physics of ice crystal accretion and shedding in the engine
- There are still many challenges

